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Melting transitions in isotropically confined three-dimensional small Coulomb clusters
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Molecular dynamic simulations are performed to investigate the melting process of small three-dimensional
clusters (i.e., systems with one and two shells) of classical charged particles trapped in an isotropic parabolic
potential. The confined particles interact through a repulsive potential. We find that the ground-state configu-
rations for systems with N=6, 12, 13, and 38 particles interacting through a Coulomb potential are magic
clusters. Such magic clusters have an octahedral or icosahedral symmetry and are found to have a large
stability against intrashell diffusion leading to an intershell melting transition prior to the intrashell and radial
melting process. For systems with two shells a local radial melting of subshells is found at low temperatures
resulting in a structural transition leading to an increased symmetry of the ordered system. Using Lindemann’s
criterion the different melting temperatures are determined and the influence of the screening of the interpar-
ticle interaction was investigated. A normal mode analysis is performed and some of the normal modes are

found to be determinantal for the melting process.

DOI: 10.1103/PhysRevE.76.031107

I. INTRODUCTION

Wigner crystallization was predicted in 1934 and states
that a liquid to solid phase transition should occur in a three-
dimensional electron gas at low temperature and density due
to strong Coulomb repulsion [1]. This phase transition be-
came known as Wigner crystallization and the solid phase as
Wigner or Coulomb crystals. Wigner crystallization and
properties of Coulomb crystals have been studied for de-
cades in such a variety of systems as electron gas trapped on
top of liquid helium [2], electrons trapped in quantum well
structures [3], strongly coupled rf dusty plasmas [4], vortex
clusters in an isotropic superfluid [5], laser-cooled trapped
ion systems [6,7], dusty plasmas [8], etc. Formation of or-
dered clusters with nested shells is expected to occur in ex-
panding neutral plasmas [9,10].

Charged particles forming large three-dimensional (3D)
isotropic clusters arrange themselves in two different forms.
The center of the cloud is characterized by a body centered
cubic lattice, while particles close to the border form concen-
tric spherical shells, and on the shell’s surface particles create
a hexagonal lattice with few dislocations and disclinations. It
has already been known for some time that finite systems
have lower melting temperature than infinite systems [11].
Naturally, the question appears whether the lowering of the
melting temperature is a consequence of the different form of
ordering, or of the finite size. Recently, Ref. [12] has shown
through a molecular dynamic simulation of larger clusters,
that the decrease in melting temperature is proportional to
the relative size of the shell surface. Additionally, the author
showed that in the vicinity of the melting temperature, the
diffusion rate in the outer regions is substantially larger par-
allel to the surface than perpendicular to it.

Concentric and equally spaced shells, which carry a spe-
cific number of particles, form small 3D systems. The num-
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ber of shells depends on the total number of particles and in
general the number of shells increases with the number of
particles. The ground state configuration of systems up to 12
particles consists of a single shell. These configurations in
fact form three-dimensional regular polygons. From N=13 to
60 the arrangement of particles in the ground state configu-
ration form two shells except for the clusters with N=58 and
59 particles. For systems larger than 60 particles ground-
state configurations start to appear with three shells. For a
review about the static properties of 3D clusters see Refs.
[13,14]. The dynamics of small 3D clusters is expected to
have different properties from that of large clusters due to
finite size and symmetry effects which are stronger in small
clusters. In the present paper we study, in detail, the melting
process in 3D small Coulomb clusters.

A large number of works are directed toward 2D systems
[15-17]. The melting process in 2D systems was found to
happen through two distinct stages. First, at low temperature,
particles of different shells lose their relative angular orien-
tation, which is called intershell melting. Second, at higher
temperature, particles are able to jump between shells, which
is called radial melting. Reference [15] showed that some of
the ground-state configurations in 2D systems, called magic
clusters, exhibit a substantial larger intershell melting tem-
perature. The stability found in magic clusters was due to the
existence of commensurability between particles in different
shells. The melting process in small 3D isotropic crystals
have been much less explored. Reference [18] investigated
only the melting process for clusters with N=30 and 94 par-
ticles. They found that for increasing temperature, the system
shows two types of diffusion pattern: a first one is diffusion
of particles inside the same shell and the second one con-
cerns intershell diffusion. In our investigation we considered
clusters having only one shell, i.e., clusters with N=5 to 12
particles and clusters with two shells and those having N
=19, 32, 38, and 55 particles were investigated in detail.
Differently from previous works we investigated the melting
process using the Lindemann’s criterion for intrashell, inter-
shell as well as radial displacements. Such analysis allowed
us to identify a melting transition which was not found in
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Ref. [18], i.e., the intershell melting transition. Furthermore,
we found that the melting process at low temperature is
much richer than the usual two step melting process found
previously in 2D Coulomb clusters and that temperature can
induce also structural transitions which lead to an enhanced
symmetry with increasing temperature.

In order to test if our results are still meaningful for other
systems such as dusty plasmas and Coulomb balls we ex-
tended our investigation to systems with screened Coulomb
interacting particles. The linear dynamics of the system is
also investigated through a normal mode analysis.

The paper is organized as follows. In the next section our
model system is introduced; the methodology used to find
stable configurations and the normal modes are given. In
Sec. III we deal with the system of classical particles inter-
acting through a Coulomb interparticle potential. First, we
investigate the melting processes in small clusters of par-
ticles ranging from N=5 to 13 particles, i.e., clusters with
one shell. Subsequently we investigated larger systems and
in particular the magic clusters with N=19, 32, 38, and 56
particles. In Sec. IV we investigate the melting processes
which are relevant at very low temperature and in Sec. V
systems of screened Coulomb interacting particles are ad-
dressed. Finally, in Sec. VI we present our conclusions.

II. MODEL AND NUMERICAL APPROACH

We study a 3D model system of N equally charged par-
ticles in an isotropic confinement potential and interacting
through a repulsive potential. The potential energy of the
system is given by

N 1 N
E=), 5mw6r?+2 V(r;-))), (1)
i=1

i>j

where m is the mass of the particle, r;=(x;,y;,z;) is the vector
position of the ith particle, V(r) is the repulsive interparticle
interaction potential, and wy is the confinement frequency of
a single particle. In the present study we consider a screened
Coulomb potential V(r)=(g?/e€)exp(=|r|/\)/|x| which re-
duces to a Coulomb potential for A —c. We can write the
potential energy (1) in dimensionless form

2)

if we express the coordinates, energy, temperature, and time,
respectively, in the following units r,=(g?/€y)', where
=mw3/2, Eozyré,_ Ty=Eok;', where ky is the Boltzmann
constant and #y=V2/w,. The dimensionless inverse screening
length, k=ry/\, is a measure of the range of the interparticle
interaction potential. All our numerical results will be given
in dimensionless units.

The stable configuration is a local or global minimum of
the potential energy which is only a function of the number
of charged particles N and the screened Coulomb parameter
k. Our numerical method to obtain the stable state configu-
ration is based on the Monte Carlo simulation technique
supplemented with the Newton method in order to increase
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the accuracy of the found energy value [16]. By starting from
many different random initial configurations we are able to
find the possible stable states, i.e., ground-state and meta-
stable state configurations, which we documented in Ref.
[14]. The eigenfrequencies are the square root of the eigen-
values of the dynamical matrix

i FH 3)
apij = O 107 o] ,a’l:,';i’
where {rz’i; a=x,y,z; i=1,...,N} is the position of the par-

ticles in the ground-state configuration.

III. MELTING TRANSITION FOR SYSTEMS
WITH COULOMB INTERPARTICLE POTENTIAL

In this section we investigate the characteristics of the
melting process in small 3D clusters of isotropically confined
particles interacting via a Coulombic potential. In Ref. [19]
magic clusters were investigated on the basis of potential
energy calculations of the cluster configuration. This was
done by calculating the addition energy, which was defined
as

AN)=[E(N+ 1)+ E(N-1) =2E(N)], (4)

where E(N) is the ground-state energy of an N-particle clus-
ter. Mathematically the addition energy corresponds to the
second derivative of the potential energy E(N) with respect
to the total number of particles NV, and as such describes the
“curvature” of the energy as a function of the number of
particles. Physically the addition energy is the amount of
energy gained by the formation of two N-particle clusters out
of two (N—1)- and (N+ 1)-particle clusters. From the analy-
sis of the minimum energy and the addition energy of the
cluster Ref. [19] found that clusters with N=6, 12, 19, 32,
38, and 56 particles have large mechanical stability. Refer-
ence [20] also identified magic cluster configurations of 3D
clusters. They implemented a topological analysis of the
relative arrangement of particles in different shells and com-
puted the Voronoi parameter. Furthermore the magic cluster
configurations found in both references coincided for small
3D Wigner clusters. However, Refs. [19,20] do not test di-
rectly the stability of 3D clusters. In this section we perform
molecular dynamics (MD) simulation to investigate the me-
chanical stability of 3D isotropic Wigner crystals of charged
particles interacting through a Coulomb interparticle interac-
tion potential. From this investigation we were able to iden-
tify the correct magic clusters, i.e., those with pronounced
mechanical stability.

The main static characteristics of the investigated 3D
magic clusters are compiled in Table I. From left to right,
Table I lists the number of particles in the system, its energy
per particle, its configuration, the radius of the shells, and the
width of the shells. The ground-state (GS) configuration of
the systems with less than 13 particles form only one shell,
while systems larger than 12 particles form two shells. For
example, the third column of Table I shows that the system
with N=31 has 4 and 27 particles, respectively, in the inter-
nal and external shells. From the last column of Table I, we
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TABLE 1. From left to right: the number of particles in the
system (N), its energy per particle (E/N), its configuration (conf.),
the radius of the shell (r), and the width of the shell A(r).

N E/N Conf. r A(r)
6 2.6540390 6 0.9406 0.0000
12 4.8389665 12 1.2700 0.0000
18 6.6788303 1,17 0.0000
1.5353 0.0012
19 6.9641459 1,18 0.0000
1.5654 0.0122
20 7.2471808 1,19 0.0002
1.5946 0.0176
31 10.0795110 4,27 0.7926 0.0124
1.9399 0.1098
32 10.3186788 4,28 0.7935 0.0000
1.9596 0.0882
33 10.5565871 4,29 0.7914 0.0215
1.9791 0.1304
37 11.4787472 6,31 0.9585 0.0324
2.0947 0.1150
38 11.7029516 6,32 0.9549 0.0000
2.1119 0.1166
39 11.9283228 6,33 0.9549 0.0348
2.1289 0.1186
55 15.2847026 12,43 1.2773 0.0250
2.4618 0.1086
56 15.4821444 12,44 1.2770 0.0193
2.4743 0.1110
57 15.6793502 12,45 1.2763 0.0210
2.4869 0.1110

notice that the width of the external shell is larger than the
width of the internal shell. In fact the external shell is formed
by subshells each with a radius very close to each other. On
the another hand, particles in small systems organize them-
selves in a perfect shell with width equal to zero, as we can
see for the systems with N=6 and 12 particles. The stability
of those subshells are investigated in Sec. IV.

In previous work on 2D systems [21] the melting tem-
perature of the intrashell, intershell, and radial melting pro-
cesses were determined. To do so the Lindemann criterion
was used and the averaged displacements were computed.
For a 3D system the expression for the square of the radial
displacement becomes

N'}/
Ar = 1%21 )= (. (5)

where r; is the modulus of the position vector of the ith
particle. Similarly, for the intrashell displacement we defined
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FIG. 1. (Color online) Intrashell displacement for systems rang-
ing from N=5 to 13 particles as a function of the temperature.

N
l Y
Aary= 2 () = {ay)?, (6)
yi=1
where a;; is the angle made by the position vectors of the
two first neighboring particles of numbers i and j belonging
to the same shell and

1
Aa'yﬁ= 1721 <a12]> - <aij>27 (7)
Yi=

for the intershell displacement, where «;; is the angle made
by the position vectors of the two first neighboring particles
of numbers i and j belonging, respectively, to the Sth and
th shells. In both equations N, indicates the total number of
particles in the yth shell, and (- --) is an average over time. In
order to characterize the melting temperature, we made use
of a Lindemann-like criterion, which states that, close to the
melting process, the respective averaged displacement starts
to deviate rapidly from its low temperature linear depen-
dence.

The dynamics of one-shell systems was investigated by a
MD simulation where we collected data during an interval of
10% time steps. The intrashell and radial displacements were
computed. Figure 1 displays the results obtained for the in-
trashell displacement as a function of temperature for sys-
tems varying from N=5 to 13 particles. The intrashell melt-
ing temperatures of the magic clusters with N=12 and 6
particles are, respectively, equal to 7=0.0195 and 0.0238 (in-
dicated by black arrows in Fig. 1). Those critical tempera-
tures are remarkably larger than the melting temperature
found in other nonmagic clusters. The intrashell melting tem-
peratures of magic clusters with N=12 and 6 particles are,
respectively, about 7 and 8 times larger than the melting
temperature 7=0.0027 found for the cluster with N=5 par-
ticles, which is the nonmagic cluster of one shell structure
that is most stable against intrashell diffusion. In fact, for
increasing temperatures, the intrashell averaged displace-
ment of nonmagic clusters of a single shell increases steeply
once temperature becomes different from zero. The intrashell
melting temperature for systems with N=12 and 13 particles
have approximately the same value, i.e., 7=0.0195 and
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FIG. 2. (Color online) Radial displacement for systems ranging
from N=5 to 13 particles as a function of the temperature.

0.0187, respectively. This fact is not a surprise since both
systems share the same arrangement of particles on the shell,
i.e., particles arrange themselves in an icosahedral structure.
One concludes that the GS configuration of the system with
N=13 particles also forms a magic cluster. The latter fact
could not be revealed through the addition energy analysis
performed in previous works [19,20].

Figure 2 displays the radial displacement against tempera-
ture for the ground-state configurations of systems ranging
from N=5 to 13 particles. The largest system, i.e., the one
with N=13 particles, is formed by one shell with 12 particles
which encloses an extra particle sitting in the center. We see
that the radial averaged displacement of this system changes
its initial linear behavior to a rapid increase at a well defined
critical temperature of 7=0.0194. From previous experience
obtained on 2D systems [22] we know that this rapid in-
crease of the radial displacement occurs when the number of
jumps of particles from the shell to the cluster’s center and
vice versa becomes statistically large. This is only possible
due to the fact that the system with 13 particles has a meta-
stable (MS) state with configuration (1,12), i.e., one particle
in the center and 12 particles forming a shell. Systems with-
out metastable configurations are expected to expand gradu-
ally with increasing temperature. The curves for Ar for sys-
tems with N=5, 6, 7, and 8 particles, which do not have
metastable states, reflect correctly this statement, i.e., there is
no abrupt change in their value. Finally we notice that for
increasing temperatures the radial displacements of the clus-
ters N=9, 10, 11, and 12, which, respectively, have meta-
stable configurations (1,8), (1,9), (1,10), and (1,11), also de-
viate from their low-temperature linear behavior. The larger
the system the lower the radial melting temperature is. This
can be clearly seen from the cases of N=12 and 13 particles
whose radial melting temperatures are, respectively, equal to
T=0.0326 and 0.0194 (indicated by black arrows in Fig. 2).

At very low temperature the dynamics of the system is
ruled by simple harmonic oscillations about a local energy
minimum. In this limit the melting process can also be un-
derstood through a normal mode analysis. Each mode is de-
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FIG. 3. (Color online) Representation (red arrows) of the oscil-
lation mode of the first nonzero frequency for the systems with (a)
N=6 and (b) 12 particles.

fined by an eigenvector and its corresponding eigenfre-
quency. Figures 3(a) and 3(b) represent the eigenvectors (red
arrows) for the normal mode of the lowest nonzero fre-
quency, respectively, for the systems with N=6 and 12 par-
ticles. The length of the arrows is proportional to the oscil-
lation amplitude of the associated particle. The lowest
frequency modes correspond to delocalized motions, in
which a large number of particles oscillate with considerable
amplitude. The highest frequency motions are more localized
and contribute less to the melting process at low temperature.
The first nonzero frequency should then be related with the
first melting process that occurs in isotropically Wigner crys-
tals if this melting process occurs at sufficiently low tem-
perature. In other words, if the system has a large melting
temperature, it will also have a large first nonzero frequency.
The lowest nonzero frequency corresponds in fact to the
fourth mode of oscillation since isotropic clusters always
have three modes of rotation which frequencies are equal to
zero [14]. Figure 4 displays the critical temperature of the
first melting process (left axis) and the values for the first
nonzero frequencies (right axis). We notice that the clusters
with largest melting temperatures have also a large value for
the first nonzero frequency. In particular the magic clusters
with N=6 and 12 particles have, respectively, the frequencies
0=0.8516 and 0.6654, which are the two largest ones.

For fewer than 12 particles in a 3D system the ground-
state configuration consists of a single shell. Those configu-
rations in fact are three-dimensional regular polygons cen-
tered around the origin. For larger systems particle clouds
arrange themselves in the form of concentric spherical shells
if the confinement potential is isotropic. Those structures are
classified by the number of particles per shell and they
evolve as follows: for N=13 particles it becomes energeti-
cally favorable to have a single particle inside the shell; for
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FIG. 4. (Color online) Critical temperature for the first melting
process (left axis, black open square) and lowest nonzero frequency
(right axis, red square) for systems varying from N=5 to 13

particles.

22<N<27 two particles constitute the internal structure,
etc.; 12 is the maximum number of particles allowed to fill
the internal shell which happens for the system with N=60
particles in the case of a two shell structure. In the case of
ground state configurations consisting of two shells, the in-
nershell structures are analogous in shape to those for the
corresponding single shell clusters [23]. The latter statement
strongly suggests that the knowledge about the dynamics of
single shell systems is helpful in the understanding of the
dynamics of larger systems.

Now we turn our attention to the investigation of the dy-
namics of larger systems, i.e., systems with two shells. The
main goal of this investigation is trying to elucidate if magic
number configurations present commensurability between
particles in the same shell or/and in different shells. Such
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property was found to play an important role into the dynam-
ics of small 2D clusters [15]. Analogously this commensura-
bility in 3D systems should enhance the stability of the clus-
ter leading to an enhanced melting temperature. To do so we
compare the results of the intrashell, intershell, and radial
displacements computed for the N-particle magic cluster
with the ones obtained for systems with N—1 and N+1 par-
ticles. Figure 5 displays the radial (black data), intrashell
(blue data), and intershell (red data) deviations for the magic
clusters with N=32, 38, and 56 particles and for their respec-
tive neighbors. The radial and intrashell displacements were
computed for the external shell [upper figures, i.e., Figs. 5(a),
5(c), and 5(e)] and internal shell [lower figures, i.e., Figs.
5(b), 5(d), and 5(f)].

If magic clusters have commensurability between par-
ticles belonging to different shells one should expect a large
resistance against radial and/or intershell diffusion. Figure
5(a) displays the radial displacement (black symbols) com-
puted for the particles in the external shell for systems with
N=31, 32, and 33 particles. Their radial melting tempera-
tures are, respectively, equal to 7=0.0249, 0.0206, and
0.0172 [red arrows in Fig. 5(a)]. Those clusters follow the
general behavior that the larger the cluster the lower the ra-
dial melting temperature. This is not hard to understand. It is
built on the following two facts: (1) the number of meta-
stable states increases with the number of confined particles
and (2) metastable states contribute to a decrease of the melt-
ing temperature. Figure 5(e) displays the radial displacement

(black symbols) for the external shell particles of the systems
with N=55, 56, and 57 particles. Their radial melting tem-
peratures are, respectively, equal to 7=0.0154, 0.0204, and
0.0199. The radial melting temperature of the magic cluster,
i.e., the system with N=56 particles, is only slightly larger
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FIG. 5. (Color online) Radial (black color) and intrashell (blue color) displacement computed for the external (upper figures) and internal
(lower figures) shells for clusters with a different number of particles. The red symbols in the lower figures give the intershell displacement

for the different systems.
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than the one of the cluster with N=57 particles. The radial
melting temperatures found for the external shell of the sys-
tems with N=37, 38, and 39 particles are, respectively, equal
to 7=0.0255, 0.0265, and 0.0221 and indicated by red ar-
rows in Fig. 5(c). The magic cluster with N=38 particles has
the largest radial melting temperature. We notice that large
resistance against radial diffusion is not a unique property for
magic clusters and that such a property is only found for the
system with N=38 particles. We will see later that particles
in the external shell of the system with N=38 particles orga-
nize themselves in a particular form. Finally we observe that
for a given system the critical temperature of radial melting
for the external shell [Figs. 5(a), 5(c), and 5(e)] and for the
internal shell [Figs. 5(b), 5(d), and 5(f)] have approximately
the same values. This fact is, of course, a consequence of the
radial diffusion of particles close to the critical temperature.
The effect of radial diffusion is expected to be strong in
systems with multiple shells.

We have seen (Fig. 1) that 6 and 12 particles arrange
themselves in a structure carrying special properties for their
dynamics. This fact naturally led us to formulate the ques-
tion: if those structures are surrounded by a second shell of
particles, in the case of large systems, is their stability
against melting retained? We found that the answer is posi-
tive, i.e., those structures keep their stability properties, as
we will demonstrate now. First lets consider the case of six
particles in the internal shell. Such situation occurs for the
GS configuration of systems with structures keep their sta-
bility properties, as we will demonstrate now. First let us
consider the case of six particles in the internal shell. Such a
situation occurs for the GS configuration of systems with
N=37, 38, and 39 particles. The internal shell of the non-
magic clusters with N=37 and 39 particles have the same
intrashell critical temperature of 7=0.0197 while for the
cluster with N=38 particles this critical temperature is 7'
=0.0241 [Fig. 5(d), red arrows]. The value of those critical
temperatures are lower than the intrashell melting tempera-
ture found for the isolated cluster with N=6 particles, i.e.,
T=0.0238 (Fig. 1). Also here we notice that the cluster with
N=38 particles has the largest intrashell critical temperature.
A similar picture is valid for the case when an icosahedron
forms the internal shell of the systems with N=55, 56, and
57, where the intrashell melting temperatures in the internal
shell are, respectively, equal to 7=0.0148, 0.0174, and
0.0177 [see Fig. 5(f), red arrows]. The lowering of the in-
trashell critical temperature of the internal shell of large clus-
ters when compared to the ones of isolated clusters with N
=6 and 12 particles is easily understood. In larger clusters
the icosahedral and octahedral structures are submitted to a
fluctuating electric field generated by the thermal induced
movement of the external shell particles.

The temperature dependence of the intrashell displace-
ment computed for the external shell and the intershell dis-
placement are shown, respectively, in Figs. 5(a) (blue sym-
bols) and 5(b) (red symbols) for the systems with N=31, 32,
and 33 particles. We notice that for the same system those
quantities diverge at the same temperature. For example, the
intrashell displacement computed for the external shell [Fig.
5(a), blue open circles] and the intrashell displacement [Fig.
5(b), red open circles] for the cluster with N=32 particles
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diverge both at the temperature of 7=0.00141. Since those
two quantities diverge at the same temperature we can only
conclude that the intrashell melting on the external shell is
the first melting process to occur and that the dynamics of
those systems do not show any sign of intershell melting. An
analogous situation is found for the nonmagic clusters N
=31, 33, 37, 39, 55, and 57. For those systems the intrashell
displacement computed for the external shell and the inter-
shell displacement also have the same critical temperature.
This fact can be verified in Figs. 5(c) and 5(d) for the sys-
tems with N=37 and 39 particles and in Figs. 5(e) and 5(f)
for the systems with N=55 and 57 particles.

The intershell melting plays an important role into the
dynamics of the clusters with N=38 and 56 particles as we
will now demonstrate. For the system with N=38 particles
both the internal and external shells are relatively stable
against intrashell melting, i.e., they are locked. The intrashell
melting for the system with N=38 particles occurs at the
large temperatures of 7=0.0241 and 7=0.0078, respectively,
for the internal [Fig. 5(c)] and external [Fig. 5(d)] shells. In
contrast to the large stability found against intrashell melting,
this system exhibits low stability against intershell rotation.
Figure 5(d) shows that its intershell displacement (red open
circles) diverges immediately for increasing temperatures,
i.e., at 7=0.0001. When temperature is in the range [0.0001,
0.0084], i.e., the interval delimited by the critical tempera-
tures, the dynamics is ruled by the relative motion of shells
with respect to each other. The intershell rotation is also the
first melting process to appear in the cluster with 56 par-
ticles. There the intershell and intrashell melting tempera-
tures are, respectively, equal to 7=0.001 and 0.002. The
range of temperature in which the intershell rotation is al-
lowed is much larger for the magic cluster with N=38 par-
ticles than for the magic cluster with 56 particles.

We have found that the magic clusters with N=6, 12, 13,
and 38 particles exhibit large resistance against intrashell dif-
fusion. Furthermore the magic cluster with N=38 particles
exhibits intershell melting. A common characteristic in the
structure of those magic clusters is that they are composed of
octahedral or icosahedral polygons.

The cluster with N=19 particles does not have one of
those polygons, which makes its dynamics interesting as we
will see further. Nevertheless, the system with 19 particles
was classified in Refs. [19,20] as a magic cluster. Figure 6
displays the radial (black symbols) and intrashell (blue sym-
bols) displacements computed for the external shell of N
=18, 19, and 20 particles. The radial melting temperatures
for the clusters with N=18, 19, and 20 particles are, respec-
tively, equal to 7=0.051, 0.040, and 0.0315 and indicated in
Fig. 6 (red arrows). The radial melting temperature follows
the usual behavior, i.e., the larger the cluster the lower the
melting temperature is. This system also does not present
resistance against intrashell diffusion. A rapid increase of
intrashell displacements (Fig. 6, blue symbols) for the sys-
tems with N=18, 19, and 20 occurs immediately for increas-
ing values of the temperature.

The first melting process for systems with one shell was
found to occur at relatively high temperature if the first non-
zero frequency is large. The first melting process for large
clusters, i.e., clusters with two shells, is indicated by the red
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FIG. 6. (Color online) Radial (black color) and intrashell (blue
color) displacements computed for the external shell of the systems
with N=18, 19, and 20 particles.

curve in Fig. 5. For the systems with N=55, 56, and 57
particles the first melting process occurs almost immediately
for increasing temperature while that for the clusters with
N=32 and 37 particles have larger values for the critical
temperature. Table II displays the value of the first nonzero
frequency and the critical temperature of the first melting
process. The systems with relatively large melting tempera-
ture and large first nonzero frequency are the ones with N
=32, 37, and 56 particles. We notice that those systems are
not necessarily the magic clusters. Our results obtained by
MD simulations are in accordance with the cluster’s stability
estimated by the normal mode analysis both for clusters with
one and two shells.

From the analysis of the dynamics of one shell systems,
i.e., Figs. 1 and 2, it turns out that particles forming an oc-
tahedron and icosahedron have a large resistance against in-
trashell diffusion. We have seen that the system with N=38
particles has also high intrashell critical temperature for both
shells. The stability found in the internal shell of the system
with N=38 particles is due to its octahedral symmetry. The
topological characteristic of the arrangement of particles on
the surface of the shell can be characterized by their discli-
nation charge ¢, which is the departure of their coordination
number ¢ from the preferred coordination number 6 (¢g=6

TABLE II. From left to right: the number of particles in the
system (N), the temperature of the first melting process (7,,), and
the first lowest nonzero frequency wy.

N T, Wy

31 3.12x 1074 0.110
32 1.37x1073 0.228
33 3.12%x 1074 0.106
37 2.30% 1073 0.232
38 4.99x 10~ 0.109
39 2.05x107* 0.062
55 2.36x1074 0.046
56 8.16 X104 0.088
57 6.33x 1074 0.062
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(o)

FIG. 7. (Color online) Particle arrangement of fivefold (black
color) and sixfold (red color) particles on the outermost shell in the
ground state of the system with N=38 (a) and 37 (b) particles. In
order to improve visualization bounds between first neighboring
fivefold particles are drawn.

—c). Particles with five and six neighbors are, respectively,
called fivefold and sixfold particles. Figure 7(a) shows the
arrangement of particles in the external shell for the system
with N=38 particles. One notices that fivefold particles (in
black color) form an icosahedral structure while the rest of
the particles, i.e., sixfold particles (in blue color), arrange
themselves around the corner of the icosahedron. Notice that
in the external shell there is no situation where a pair of first
neighboring particles is formed by two fivefold particles. In
other words, there is at least one sixfold particle between any
pair of fivefold particles. To improve visualization we dis-
play a projection of the top [Fig. 8(a)] and bottom [Fig. 8(b)]
parts of Fig. 7. We notice that the relative arrangement of
particles in Figs. 8(a) and 8(b) is equivalent and that the
whole structures are rotated with respect to each other by an
angle of 72°. Such an icosahedral structure formed by the
fivefold particles in the external shell of the system with N
=38 particles is not found for other clusters. As one example
we show the arrangement of particles in the external shell of
the system with N=37 particles in Fig. 7(b). The structure
formed by the fivefold particles is not an icosahedron and
two fivefold particles can form a pair of first neighboring
particles.

One of the most interesting results of this paper is the
large resistance against intrashell diffusion found in the ex-
ternal shell of the GS configuration of the system with N
=38 particles. Next we investigated such mechanical prop-

FIG. 8. (Color online) Visualization of the top (a) and bottom
(b) of the arrangement of particles in the external shell of the GS
configuration of the system with N=38 particles [Fig. 7(a)]. Par-
ticles in black and red are, respectively, fivefold and sixfold
coordinated.
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ange balls. Particles in the internal shell are represented by blue - - - Td _
balls. The arrows represent the eigenvectors of a specific normal 0.2 r r r T
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erty through a normal mode analysis. To do so we first iden- AT J/ ¢V ]
tify which oscillation modes correspond to diffusion of par- Lm | , , R
ticles in the external shell. We took into account only the 4 5 6 7 8

modes of lowest frequencies since delocalized modes are the
most important to understand the melting process. 3D isotro-
pic clusters have three degenerated modes of rotation with
frequencies equal to zero. We show in Fig. 9(a) one of those
modes for the GS configuration of the system with N=38
particles. In the external shell the fivefold and sixfold par-
ticles are indicated, respectively, by black and red balls. Par-
ticles in the internal shell are indicated by blue balls. The
arrows indicate the direction of oscillation while their length
is proportional to the amplitude of oscillation of each asso-
ciated particle. Notice that for this mode particles in the in-
ternal and external shells oscillate approximately in parallel.
In the sequence Figs. 9(b), 9(c), and 9(d) display, respec-
tively, the fourth, fifth, and sixth oscillation modes, i.e., the
first three lowest nonzero frequencies modes. Notice that
those modes are governed mainly by the oscillation of par-
ticles in the internal shell characterizing an intershell rotation
mode. Differently from the latter oscillation pattern, the sev-
enth mode of the GS configuration of the system with N
=38 particles [Fig. 9(e)] exhibits an intrashell motion of the
external shell. For this mode the amplitude of oscillation of
particles is much larger in the external shell than in the in-
ternal one.

In order to characterize quantitatively those modes we
define the averaged relative amplitude Av;=v /vy, Where
Vext (Vi) 18 the averaged amplitude of oscillation per particle

i

FIG. 10. (Color online) (a) Averaged relative amplitude and (b)
eigenfrequencies for the systems with N=37, 38, and 39 particles as
a function of the mode number i from i=4 to 8. Arrows indicate the
respective quantities related to intrashell melting. The letters state
for r (rotation), v (vortex), and d (diffusion of particles on the
external shell). The inset displays the intrashell melting temperature
(red squares, left axis) and the frequencies of the mode for intrashell
motion (black open squares, right axis) for the systems with N
=37, 38, and 39 particles.

computed in the external (internal) shell for the ith normal
mode. The normal mode related to intrashell melting of the
external shell is the lowest frequency mode with large value
of Av;. Figure 10(a) displays Av; as a function of the mode
number i for the systems with N=37 (black open squares),
38 (red squares), and 39 (blue squares) particles. In agree-
ment with the analysis of Figs. 9(b), 9(c), and 9(d), the value
of the averaged relative amplitude is very small for the first
three lowest nonzero frequencies of the system with N=38
particles, i.e., Av;<0.2 for i=4, 5, and 6 [Fig. 10(a), red
squares]. Contrarily, for the seventh mode of the system with
N=38 particles the averaged relative amplitude is pro-
nounced larger, i.e., Av;=21.708 [Fig. 10(a), indicated by
red arrow]. The latter mode is related to the intrashell melt-
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ing of the external shell of the system with N=38 particles.

For the systems with N=37 and 39 particles the values of
the averaged relative amplitude computed for the seventh
and fifth modes are, respectively, equal to Av,=2.7698 [Fig.
10(a), black arrow] and Avs=0.8852 [Fig. 10(a), blue ar-
row]. Those are the modes with an enhanced value for the
averaged relative amplitude and therefore must be related to
the intrashell melting temperature on the external shell of
those clusters. The eigenvector of the seventh oscillation
mode of the system with N=37 particles is shown in Fig.
9(g) while that of its rotation mode, i.e., the fourth one, is
seen in Fig. 9(f). For the system with N=39 particles the fifth
mode is shown in Fig. 9(i). This mode corresponds to a vor-
texlike motion where the vortex center sits at the sevenfold
particle (orange ball). The mode of first nonzero frequency
for the system with N=39 particles [Fig. 9(h)] corresponds
mainly to an intershell rotation.

Figure 10(b) displays the eigenfrequencies for the systems
with N=37 (black open squares), 38 (red squares), and 39
(blue circles) particles and mode number varying from i=4
to 8. To indicate the motion mode the letters r, v, and d are
placed beside the data and stand, respectively, for rotation,
vortex, and diffusion on the external shell. The frequencies
of the modes characterized by intrashell motion are indicated
by arrows. From Fig. 10(b) we can see that the rotation mode
ws=0.1490 for the system with N=38 particles is substan-
tially smaller than its frequency for the intrashell mode, i.e.,
®7;=0.3358. The latter fact is in accordance with the values
found for the critical temperatures of the system with N
=38 particles, i.e., an intershell melting temperature of value
T=0.0001 [see Fig. 5(d), open red circles] which is much
smaller than the intrashell critical temperature of the external
shell T7=0.0078 [see Fig. 5(c), open blue circles]. Further-
more the inset in Fig. 10(b) shows the values for the in-
trashell critical temperature of the external shell (left axis,
red squares) and the frequency of the intrashell mode (right
axis, black open squares) for the particle numbers N=37, 38,
and 39. We notice a very good agreement between those two
data, i.e., the larger the eigenfrequency, the higher the melt-
ing temperature is.

IV. FINE STRUCTURE

Charged particles in 3D clusters, which are confined by a
parabolic potential, order themselves in shells, if the number
of particles is not too large. Often, such shells have a fine
structure, i.e., the shells have a nonzero thickness (see last
column of Table I) and closer inspection reveals that the
shells consist of a few subshells, i.e., the shell has a nonzero
width. In this section we consider the small temperature be-
havior of such clusters. We present a detailed investigation of
the particle motion as a function of temperature before any
jumps between shells occur and thus before the radial melt-
ing sets in. We found that the detailed behavior depends very
crucially on the exact ground-state configuration and that
temperature-induced structural transitions are possible which
lead to an enhanced symmetry with increasing temperature.

Figure 11 shows the temperature dependence of the radial
displacement computed for the external shell for the magic
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FIG. 11. Temperature dependence of the radial displacement for
the system with N=38 particles in the low-temperature range. In the
inset the average radial position of the particles is shown.
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cluster with N=38 particles. We can see that radial displace-
ment increases rapidly over a small temperature interval
around 7=0.0014. These small but rapid increases were
never noticed before, probably because one needs rather ac-
curate simulations in a small temperature range and for many
temperature steps leading to long calculation times.

Such a phenomenon can be understood by investigating
the average radial position of each particle as a function of
temperature. These results are shown in the inset of Fig. 11,
where at zero temperature the two-shell structure is clearly
seen with the outer shell showing a fine structure resulting in
five subshells. However, exactly at the temperature where the
jump in the mean square radial deviation occurs for the outer
shell, those subshells start to coalesce into a single shell. We
can conclude that this jump corresponds to a local melting of
the outer shells, forming a single broad shell. This leads to an
increased symmetry of the system. Consequently, the transi-
tion is a temperature induced structural (phase) transition. It
is similar to the structural phase transition which was re-
cently found for certain 2D Coulomb bound clusters [24]. At
this jump, the angular order between particles in different
shells is destroyed, due to intershell motion, as shown in
Figs. 5(c) and 5(d), which displays, respectively, the in-
trashell and intershell displacements.

The system with 38 particles is a magic configuration; it is
interesting to see if the above results are different for a non-
magic configuration. We consider first the nonmagic cluster
with N=33 particles. The radial displacement for the outer
shell is shown in Fig. 12 and the average position of the
particles in its inset. The outer (inner) shell can be divided
into seven (two) subshells at zero temperature. With the
slightest increase of temperature, the subshells start to form
one broad shell. This local radial melting goes hand in hand
with the loss of intrashell angular order [see Fig. 5(a)].

The radial displacement computed for the external shell of
the system with N=57 particles is shown in Fig. 13 and in its

031107-9



S. W. S. APOLINARIO AND F. M. PEETERS

T T T " r
oo 1
L N=33 ...." :
0.0015 ° .
L 'Y
o’
®
® ¢ 21
(W r (4 '
<] 0.0010 - :
i [ ]
®
L ®
0.0005 °
b 078l ¥ 1 1
. L
I .. 0.000 OOIO1 0602 0603 0.004]
0.0000 |-e0®® T .
1 L L 1 L L 1 L "
0.0000 0.0007 0.0014 0.0021
T

FIG. 12. The same as Fig. 11 but now for N=33 particles.

inset we can see the average radial position for all particles.
The outer and inner shells at low temperature are composed
of several subshells. For increasing temperature those sub-
shells start to coalesce, but note that for the outer shell this is
a two step process. Indeed, the radial displacement passes
through two distinct jumps, respectively, at the temperatures
T=2.33X 107*, where the outer shell merges into three sub-
shells and 7=0.0012 where finally the particles in the outer
shell form a single broad shell. At those critical temperatures
the pattern of the average radius changes, as we can see in
the inset of Fig. 13. Furthermore, the orientational order be-
tween the first and second shells is already lost at the low
critical temperature of T=2.33X10™* [see Figs. 5(e) and

5(0)]
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FIG. 13. The same as Fig. 11 but now for N=57 particles.
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FIG. 14. (Color online) Temperature dependence of the in-
trashell (red symbols) and radial (black symbols) displacements for
the magic clusters with N=6 and 12 particles and screening param-
eter k=1 and 0.

V. MELTING TRANSITION FOR SYSTEMS
WITH A SCREENED COULOMB
INTERPARTICLE POTENTIAL

In the previous sections we have investigated melting pro-
cesses for isotropically confined Wigner crystals of particles
interacting through a pure Coulomb potential. The dynamics
of the systems was investigated over the whole temperature
range. At high temperatures melting can develop through
three processes, i.e., intrashell, intershell, and radial melting,
while for larger clusters and at low temperatures a local tran-
sition sets in the external and internal shells which brings the
system to a more symmetric configuration. However, many
systems, for example, dusty plasmas, does not interact
through a pure Coulomb potential but rather through a
screened Coulomb interparticle potential. In this section we
investigate the dependence of the melting processes on the
range of the interparticle interaction. First, we investigate the
melting process for magic clusters with N=6 and 12 particles
and interacting through a screened Coulomb potential with
screening parameter x= 1. This value of the screening param-
eter is typically found in experiments [25]. The characteris-
tics of the melting process found for those systems will be
compared with the one present in systems of particles inter-
acting through a Coulomb potential. Finally, the effect of
screening of the interparticle interaction potential in larger
clusters, i.e., systems with N=38 and 39 particles, is ad-
dressed.

The temperature dependences of the intrashell displace-
ment for the systems with N=6 and 12 particles and k=1 are
displayed in Fig. 14 (blue symbols). For the sake of compari-
son the results for the Coulomb case are also displayed. We
note that there is no significant change in the behavior of the
intrashell melting when the Coulomb potential is screened.
The intrashell melting temperatures for the systems with «
=1 and O have approximately the same values, i.e., T
=0.0238 and 0.0196, respectively, for N=6 and 12 particles.
The radius of the GS configuration decreases with increasing
screening parameter. For the Coulomb (k=1 screened Cou-
lomb) case, the radius of the GS configurations are r
=0.9406 (0.8165) and 1.27 (1.0646), respectively, for the
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FIG. 15. (Color online) For the systems with N=38 and 39
particles: first nonzero frequency w, (left axis), and the energy dif-
ference E,—E; between the lowest energy MS and the GS configu-
ration (right axis) as a function of the screening parameter .

systems with N=6 and 12 particles, respectively. Although
the radius of the cluster is reduced by increasing the value of
k the relative angle between the position vectors of the par-
ticles in the GS configuration remains the same. In fact, par-
ticles in both GS configurations, i.e., for k=0 and 1, arrange
themselves in the corners of an icosahedron.

Figure 14 also displays the radial displacement against
temperature for the GS configuration of the systems with N
=6 and 12 particles and screening parameter x=1 (black
data). The radial displacement for the Coulomb system was
also added to the figure. We can see that the radial melting
temperature also does not depend strongly on the screening
parameter. The radial melting temperature for the system
with N=12 particles is approximately 7=0.0326 and 0.0332,
respectively, for k=0 and 1. Before the critical temperature
we notice a slight difference in the linear behavior of the
radial displacement. Actually, the radial displacement has a
different slope for different values of x« which was not the
case for the intrashell displacement.

Now we analyze the effect of the screening of the inter-
particle interaction potential into the dynamics of large clus-
ters. The screening parameter « can induce structural phase
transitions of first and/or second order. At those transitions
discontinuities in first and second derivatives of the energy
with respect to the screening parameter are found [26,27].
This phenomenon can appear both in the GS and MS con-
figurations and so the energy difference between those states
is a good quantity to identify such structural phase transi-
tions. Second order structural phase transitions can be iden-
tified through the computation of the first nonzero frequency.
At the point where the second order transition occurs the first
nonzero frequency becomes equal to zero [26]. Figure 15
displays the energy difference E,—E, (right axis) between
the lowest energy MS and the GS configurations against the
screening parameter « for the systems with N=38 (blue
squares) and N=39 (red squares) particles. We notice that the
behavior of the energy difference strongly depends on the
cluster size. The energy difference for the system with N
=38 particles increases smoothly with «. The latter fact in-
dicates that the screening parameter « does not induce a first

PHYSICAL REVIEW E 76, 031107 (2007)

0.08 - 1

o
o
o
o
0.06 [ 1 o
o)
o
004 [ o
o

0.02 -

0.00 Dﬁﬁﬁgﬂm u ) ]

0.00 0.01 0.02 0.03

FIG. 16. (Color online) Temperature dependence of the in-
trashell and radial displacements computed for the internal and ex-
ternal shells of the magic cluster with N=38 particles and screening
parameter k=1.

order structural phase transition neither in the GS nor in the
MS configurations of the system. In addition, Fig. 15 also
displays the first nonzero frequency w, (left axis) for the
system with N=38 (open circles) and N=39 (closed circles)
particles. From the first nonzero frequency of the system
with N=38 particles one can see that there is no second order
structural phase transition since the first nonzero frequency
does not go to zero. Actually, for a value of the screening
parameter inside the interval 0<<«=<1 the GS and MS con-
figurations of the clusters with N=38 particles keep the shell
arrangement (6,32). Differently, the energy difference E,
—E, of the system with N=39 particles has many peaks
which indicates that the GS or the MS configurations pass
through a first order structural phase transition. In fact, we
found that for its GS configuration the shell arrangements are
(6,33) and (7,32), respectively, for k=0 and 0 <« <1 while
that for the MS configuration the shell arrangements are
(6,33), (7,32), and (8,31), respectively, for k=0, 0.25<k
=<0.75 and 1=k=<2. Such a structural phase transition
might influence the melting behavior of the GS configura-
tion. The latter will be discussed now for the systems with
N=38 and 39 particles with k=1.

Figure 16 displays the intrashell (blue data) and radial
(black data) displacements for the internal and external shells
of the systems with N=38 particles and screening parameter
x=1. The shell’s occupation for the system with N=38 par-
ticles and k=1 is (6,32). The critical temperatures for the
intrashell melting are 7=0.01378 (Fig. 16, red arrow) and
0.0084 (Fig. 16, green arrow), respectively, for the internal
and external shells. For the case of a pure Coulomb interpar-
ticle potential [Figs. 5(c) and 5(d)] the corresponding critical
temperatures are 7=0.0241 and 0.0078. Those critical tem-
perature are comparable in magnitude and it is clear that the
screening of the interparticle interaction potential does not
alter the main dynamical properties of the magic cluster with
N=38 particles, i.e., a large intrashell melting temperature
both in the internal and external shells.

Figure 17 displays the intrashell (blue data) and radial
(black data) displacements for the internal and external shells
of the systems with N=39 particles and screening parameter
x=1. The shell’s arrangement for the system with N=39 par-
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FIG. 17. (Color online) The same as Fig. 16 but now for N
=39 particles.

ticles and k=1 is (7,32). The intrashell melting temperature
for the internal shell (Fig. 17, closed circles) is T=0.0028.
This latter value is much lower than the one found for the
case of a pure Coulomb interparticle potential, ie., T
=0.0197 [Fig. 5(d)]. For the case of k=1 the internal shell
becomes less stable since seven particles do not make a
magic arrangement. Oppositely, the stability of the external
shell is enhanced and the intrashell melting temperature goes
from 7=0.0003 (k=0) to 0.0069 («=1). In fact, particles in
the external shell of the system with N=39 particles and «
=1 arrange themselves in a magic configuration similar to
the one shown in Fig. 7(a).

VI. SUMMARY AND CONCLUSIONS

We investigated the melting process of small 3D isotropi-
cally confined Wigner crystals of charged particles interact-
ing through Coulomb or screened Coulomb potentials. The
stability of the clusters was investigated by MD simulations
where the Lindemann’s criterion was used. We found that the
GS configuration of the systems with N=6, 12, 13, and 38
particles have large mechanical stability and are therefore
identified as the true magic clusters. The common character-
istic of magic clusters is that they are formed by one of the
highly regular structures, i.e., an octahedron or icosahedron.
For the system with N=38 particles each fivefold coordi-
nated particle sits in one of the corners of an icosahedron and
is surrounded by sixfold coordinated particles.

We found that, due to the existence of MS configurations,
the solid-liquid transition is rather sharp even in small size
systems, i.e., systems with N=12 and 13 particles. Oppo-
sitely, the radial melting transition in smaller clusters, such
as, for example, with N=5 to 8 particles, evolves continu-
ously over a wide temperature interval. Systems with 6 and
12 particles have large intrashell melting temperature. Fur-
thermore the resistance against intrashell diffusion in icosa-
hedral and octahedral structures is found to remain large
even when those structures form the inner shell of larger
clusters.
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We found that small size effects, i.e., the cluster’s sym-
metry, plays an important role in the dynamics of small
Wigner crystals. The melting transition can evolve through
three different processes which strongly depend on the ar-
rangement of particles on the shells of the GS configuration.
The solid-liquid transition in nonmagic clusters occurs
through two steps: first at low temperature the nonmagic
cluster passes through an intrashell melting and then at
higher temperature through a radial melting. Differently, pro-
nounced resistance against intrashell diffusion is found in the
magic cluster with N=38 particles which gives the system
the possibility to undergo an intermediate melting process,
the so-called intershell melting. This melting process was
never studied before in 3D clusters.

The dynamics of systems with two shells where the ex-
ternal shell is formed by a set of subshells with slightly dif-
ferent radius was investigated in the small temperature range.
It was shown that the radial order of those subshells in such
a shell is maintained until the angular order between the
different shells is lost. At this temperature, a jump in the
mean square radial displacement is observed. This corre-
sponds to a local melting of the shell resulting in larger radial
fluctuations. This structural transition was not noticed before
in 3D clusters. After this transition the symmetry of the clus-
ter is increased and the particles in the broadened shell can
interchange their positions. Such melting process is charac-
teristic of the low-temperature dynamics and does not affect
the stability of magic clusters.

The effect of screening of the interparticle interaction on
the melting process was also investigated. The different criti-
cal melting temperatures for the systems with N=6, 12, 38,
and 39 particles and k=1 were determined. This value of the
screening parameter is typical for experiments in dusty plas-
mas. We show that the effect of screening does not modify
significantly the main characteristics of the dynamics found
in the magic clusters as long as the configuration of the clus-
ter is not modified. Furthermore, by changing the screening
of the interparticle interaction potential one can induce struc-
tural phase transitions, i.e., where the configuration of the
shell structure is modified, that enhances or decreases the
stability of the shells of nonmagic clusters.

A normal mode analysis was performed and we found
good agreement between the values of the eigenfrequencies
and those of the critical temperatures obtained by MD simu-
lation. From the normal mode analysis it turned out that (1)
the oscillation mode associated to the first nonzero frequency
has a strong character of intershell rotation in the case of a
two shell configuration, (2) normal modes of the type in-
trashell motion has large eigenfrequencies if the system is a
magic cluster, and (3) the fifth mode of the system with N
=39 particles presented a vortexlike motion around a seven-
fold particle on its external shell.
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